Only internationally recognized abbreviations and brevity codes should be used. In principle, SI units should be used to denote units, in accordance with the symbols below.

SI prefix, denoting a multiple of the original unit, such as 10^9 , 10^6 , 10^3 , 10^{-3} , 10^{-6} , 10^{-9} and 10^{-12} are shown as G, M, k, m, μ , n and p, respectively. Symbols of units do not require a period (.) or "s" for plurals.

Length	nm, µm, mm, cm, m, km	Gravity acceleration	g
Area	mm^2, cm^2, m^2, km^2	Pressure, stress	Pa, hPa, MPa
Capacity	μ l, ml, dl, l, m ³	Current	μA, mA, A, kA
(liquid, gas)			• • • •
Capacity (solid)	mm^3 , cm^3	Power voltage	μ V, mV, V, kV
Mass	pg, µg, mg, g, kg	Electric resistance, impedance	mΩ, Ω, kΩ, MΩ
Mass of substance	mmol, mol	Power, electric power	μW, mW, W
Concentration,	% (mass percentage),	Frequency	Hz, kHz, MHz
ratio	wt %, vol%, ppb, ppm,	Electric charge	mC, C
	μg/ml, mg/ml, g/ml,	Capacitance	pF, μF, mF, F
	mg/l, g/l, mmol/l, mol/l,	Inductance	μH, mH, H
	mg/kg, pH(hydrogen-ion	Radiation dose	
	concentration) (Refrain		
	from using mM, M, N		
	where possible to avoid		
	confusion with M[mega],		
D	N[Newton])	D 1' (' ')	
Density	g/ml (liquid, gas), g/cm ⁻	Radioactivity	mBq, Bq, KBq, MBa GBa
Time	(solia) second (in Japanese)	Absorbed dose	WIDY, UDY
1 mile	minute (in Japanese)	Ausorocu dosc	μ Gy, IIIGy, Gy, k Gy, MGy
	hour (in Japanese) day		KUY, MUY
	(in Japanese) or ms s		
	min. h. d		
Angle	rad, " (second),	Radiation dose	uC/kg. mC/kg.
e	' (minute), ° (degree)		C/kg, kC/kg,
			MC/kg
Temperature,	K, °C		
temperature			
difference			
Work, Energy	J, cal, kcal	Dose equivalent	μSv, mSv, Sv, kSv, MSv

Measurement units, not listed above, are to be used according to the common practice.

Other symbols

1) Monovalent, divalent or trivalent <u>cations</u> are, respectively, written $\frac{+, 2+, 3+}{}$ as a superscript to the right of an atomic symbol or atomic chart.

2) Monovalent, divalent or trivalent <u>anions</u> are, respectively, written ^{-, 2-, 3-} as a superscript to the right of an atomic symbol or atomic structure.

3) A hyphen (-) denotes a "range", when used between numerals.

4) A hyphen (-) denotes high-energy bond in a chemical structural formula.

- 5) Small capital letters, D or L, denote the configurations of sugar-groups and amino acids.
- 6) The mass number of an isotope is written as a superscript to the left of an element's symbol (e.g. ⁴⁵Ca).